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Daugavet points and ∆-points in Lipschitz-free spaces

by

Mingu Jung (Pohang) and Abraham Rueda Zoca (Murcia)

Abstract. We study Daugavet points and ∆-points in Lipschitz-free Banach spaces.
We prove that if M is a compact metric space, then µ ∈ SF(M) is a Daugavet point if
and only if there is no denting point of BF(M) at distance strictly smaller than 2 from µ.
Moreover, we prove that if x and y are connectable by rectifiable curves of length as close
to d(x, y) as we wish, then the molecule mx,y is a ∆-point. Some conditions on M which
guarantee that the previous implication reverses are also obtained. As a consequence,
we show that Lipschitz-free spaces are natural examples of Banach spaces where we can
guarantee the existence of ∆-points which are not Daugavet points.

1. Introduction. Let X be a Banach space and T : X → X be a
bounded operator. We say that T satisfies the Daugavet equation if

(1.1) ∥T + I∥ = 1 + ∥T∥,

where I denotes the identity operator. The Daugavet equation has been
widely studied in the literature ([19, 21, 26] and references therein), even in a
more general context, where T is not necessarily a linear operator [11, 20, 27].

One of the most famous properties related to the Daugavet equation,
which justifies its name, is the Daugavet property. Recall that a Banach
space X has the Daugavet property if every rank-one operator satisfies the
Daugavet equation. This property comes from [12], where it is proved that
C([0, 1]) enjoys this property. Since then, a lot of examples of Banach spaces
enjoying the Daugavet property have been found, such as C(K) for a perfect
compact Hausdorff topological space K, L1(µ) and L∞(µ) for a non-atomic
measure µ, or the space of Lipschitz functions Lip0(M) over a metrically
convex space M (see [18, 21, 29] and the references therein for details).

In [17] the following weaker property is considered: a Banach space X is
said to be a space with bad projections if ∥I − P∥ ≥ 2 for every rank-one
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projection P : X → X. This property was rediscovered later under the
names of LD2P+ [1] and of diametral local diameter two property [7].

One of the reasons why the above properties have attracted attention is
that they have strong connections with the geometry of the unit ball of a
Banach space. To be more precise, let us recall the following two results.

Theorem 1.1 ([21, Theorem 2.1]). Let X be a Banach space. The fol-
lowing assertions are equivalent:

(1) X has the Daugavet property.
(2) For every x ∈ SX , every ε > 0 and every slice S of BX there exists

y ∈ S such that
∥x− y∥ > 2− ε.

Theorem 1.2 ([17, Theorem 1.4]). Let X be a Banach space. The fol-
lowing assertions are equivalent:

(1) X is a space with bad projections.
(2) For every x ∈ SX , every ε > 0 and every slice S of BX containing x

there exists y ∈ S such that
∥x− y∥ > 2− ε.

The previous characterizations motivated the authors of [2] to introduce
local versions of the above geometric properties, which will be central to the
present paper. Given a Banach space X and a point x ∈ SX , it is said that
the point x is
• a Daugavet point if, given any slice S of BX and any ε > 0, there exists
y ∈ S with ∥x− y∥ > 2− ε;

• a ∆-point if, given any slice S of BX containing x and any ε > 0, there
exists y ∈ S with ∥x− y∥ > 2− ε.
In the previous language, a Banach space X has the Daugavet property

(respectively, is a space with bad projections) if every point in SX is a Dau-
gavet point (respectively, a ∆-point). Deeper connections between Daugavet
and ∆-points with the Daugavet property are exhibited in [2]. Furthermore,
examples of Daugavet and ∆-points in some classical Banach spaces are
exhibited in [2, Section 3].

The main aim of this paper is to study Daugavet points and ∆-points in
Lipschitz-free spaces (see formal definition in Section 2). In the last years,
geometric properties around the Daugavet property have been deeply studied
[8, 14, 22, 24, 25]. Of particular interest to us is [14, Theorem 3.5] where it
is proved that a Lipschitz-free space F(M) has the Daugavet property if
and only if the metric space M is a length space (i.e. for any distinct points
x, y ∈ M their distance d(x, y) is the infimum of the lengths of rectifiable
curves in M joining them). We will take advantage of a localization of this
property in order to obtain sufficient conditions for a molecule mx,y to be a
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∆-point in Section 4 which, in a large class of examples, will turn out to be
equivalences. Furthermore, in Section 3 we obtain a characterization of when
any element µ ∈ SF(M) is a Daugavet point in terms of a separation condition
from the set of denting points. As a consequence of the above results, we
show that Lipschitz-free Banach spaces are a class where one can easily
and naturally produce examples of ∆-points which are not Daugavet points,
in contrast with previously known examples which required the study of
absolute sums of Banach spaces [2, Corollary 5.5] or technical constructions
of Banach spaces with 1-unconditional bases [3, Theorem 3.1].

Let us now describe in more detail the content of the paper. In Section 2
we present necessary notation together with some preliminary results. In
Section 3 we study Daugavet points in F(M) and in Lip0(M). We prove in
Theorem 3.2 that for a compact metric space M , an element µ ∈ SF(M) is
a Daugavet point if µ is at distance 2 from every denting point of BF(M).
Furthermore, when µ is of the form mx,y, we characterize the fact that µ is a
Daugavet point in terms of a geometric condition on the points x, y ∈ M . We
end the section with a brief discussion about Daugavet points in Lip0(M)
in connection with locality properties of Lipschitz functions. In Section 4 we
define the concept of connectable molecule (Definition 4.1), which can be seen
as a localization of length property of metric spaces. We prove that if mx,y

is a connectable molecule then it is a ∆-point. This permits us, on the one
hand, to get a procedure to construct Lipschitz-free spaces with molecules
which are ∆-points but not Daugavet points. On the other hand, in search
of conditions under which molecules which are ∆-points are connectable we
prove that a molecule mx,y is a ∆-point if and only if for a given slice S
containing mx,y and ε > 0 there exist u, v ∈ M with 0 < d(u, v) < ε such
that mu,v ∈ S (Theorem 4.7). We end the section with some conditions
under which every molecule which is a ∆-point is connectable in subsets of
strictly convex Banach spaces (Theorems 4.13 and 4.17).

2. Notation and preliminary results. We will consider only real Ba-
nach spaces. Given a Banach space X, we denote the closed ball (respectively,
the sphere) of X centered at x ∈ X with radius r > 0 by BX(x, r) (respec-
tively, SX(x, r)). If the center is 0 and the radius is 1, we simply write BX

and SX . We will also denote by X∗ the topological dual of X. By a slice
of BX we mean a set of the form

S(x∗, α) := {x ∈ BX : x∗(x) > supx∗(BX)− α},

where x∗ ∈ X∗ and α > 0. If X is a dual Banach space, this set will be called
a w∗-slice if x∗ belongs to the predual of X. Note that finite intersections
of slices of C (respectively of w∗-slices of BX) form a basis for the inherited
weak (respectively weak-star) topology of BX .
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Let X be a Banach space and let x ∈ SX . Recall that x is a preserved
extreme point if x is an extreme point of BX∗∗ . Also, x is a denting point if
there exist slices of BX of arbitrarily small diameter containing x. We will
denote by dent(BX) the set of denting points of BX .

It is known that ∆-points in a Banach space X can be characterized in
the following way (see [2, Lemma 2.1]). Let x ∈ SX be given. The following
assertions are equivalent:

(1) x is a ∆-point;
(2) for every slice S of BX with x ∈ S and ε > 0, there exists y ∈ S such

that ∥x− y∥ ≥ 2− ε;
(3) for every x∗ ∈ X∗ with x∗(x) = 1, the projection P = x∗ ⊗ x satisfies

∥I − P∥ ≥ 2.

This result allows us to obtain the following further characterization of
∆-points, which is probably well known to specialists, but whose proof we
include for completeness.

Lemma 2.1. Let X be a Banach space and x ∈ SX be a ∆-point. For every
ε > 0 and every slice S = S(f, α) of BX with x ∈ S and α

1−α < ε, there
exists a slice S(g, α1) of BX such that S(g, α1) ⊂ S(f, α) and ∥x−z∥ ≥ 2−ε
for all z ∈ S(g, α1).

Proof. The proof will follow the lines of that of [21, Lemma 2.1]. Choose
η > 0 so small that η < 1− 1−α

f(x) and η < ε− α
1−α . If P := (f(x)−1f)⊗x, then

∥I − P∥ ≥ 2 by [2, Lemma 2.1]. It follows that there exists y∗ ∈ SX∗ such
that ∥y∗−P ∗y∗∥ > 2−η. Define g = P ∗y∗−y∗

∥P ∗y∗−y∗∥ ∈ X∗ and α1 = 1− 2−η
∥P ∗y∗−y∗∥ .

If z ∈ S(g, α1), then

y∗(x)
f(z)

f(x)
− y∗(z) > 2− η.

We may assume that y∗(x) > 0 (since y∗(x) cannot be zero). Then we get
y∗(x) f(z)f(x) > 1−η, so f(z) > (1−η)f(x) > 1−α. Moreover, ∥f(x)−1x−z∥ >

2− η since f(x)−1y∗(x)− y∗(z) > 2− η. This implies that

∥x− z∥ > (2− η)− α > 2− ε.

By using [17, Lemma 2.1], we can improve the previous result.

Lemma 2.2. Let X be a Banach space. Then x ∈ SX is a ∆-point if and
only if for every ε > 0 and every slice S = S(f, α) of BX with x ∈ S, there
exists a slice S(g, α1) of BX such that S(g, α1) ⊂ S(f, α) and ∥x−z∥ ≥ 2−ε
for all z ∈ S(g, α1).

Proof. We only need to prove the “only if” part. Let ε > 0 and a slice
S = S(f, α) of BX with x ∈ S be given. Assume, up to a normalization
argument, that ∥f∥ = 1. Pick any η > 0 with η < α and η

1−η < ε. By [17,
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Lemma 1.4], there exists h ∈ SX∗ such that x ∈ S(h, η) ⊂ S(f, α). Applying
the above lemma to the slice S(h, η) and ε > 0, we may find a slice S(g, α1)
of BX such that S(g, α1) ⊂ S(h, η) and ∥x− z∥ ≥ 2− ε for all z ∈ S(g, α1).
As S(g, α1) is contained in S(f, α) as well, we are done.

Remark 2.3. Similar estimates to the ones of the previous two lemmas
allow one to prove the following result: Let X be a Banach space and x ∈ SX

be a Daugavet point. Then, for every slice S of BX and every ε > 0, there
exists a slice T of BX contained in S and such that

∥x− z∥ > 2− ε for every z ∈ T .

Remark 2.4. Let us explain our interest in Lemma 2.2. Let X be a
Banach space and let A be a subset of BX such that co(A) = BX . Pick a
∆-point x ∈ SX . By definition, given a slice S containing x, there are y ∈ S
such that ∥x− y∥ > 2− ε. Lemma 2.2 allows us to guarantee that one such
element y can be found in A. Indeed, Lemma 2.2 implies the existence of a
slice T contained in S such that every y ∈ T satisfies ∥x− y∥ > 2− ε. Now,
since co(A) = BX , A intersects every slice of BX , in particular T ∩ A ̸= ∅.
This property is of relevance for Section 4 (in particular, for Lemma 4.6).

Let us now introduce the necessary notation for Lipschitz-free spaces
together with a preliminary result. Given a metric space M and a point
x ∈ M , we will denote by B(x, r) (respectively, S(x, r)) the closed ball
(respectively, sphere) centered at x with radius r. Given x, y ∈ M we define
the metric segment by

[x, y] := {z ∈ M : d(x, y) = d(x, z) + d(y, z)}.
Let M be a metric space with a distinguished point 0 ∈ M . The couple
(M, 0) is commonly called a pointed metric space. By an abuse of language
we will say only “let M be a pointed metric space” and similar sentences.
The vector space of Lipschitz functions from M to R will be denoted by
Lip(M). Given f ∈ Lip(M), we denote its Lipschitz constant by

∥f∥L = sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ M, x ̸= y

}
.

This is a seminorm on Lip(M) which is clearly a Banach space norm on the
space Lip0(M) ⊂ Lip(M) of Lipschitz functions on M vanishing at 0.

We denote by δ the canonical isometric embedding of M into Lip0(M)∗,
given by ⟨f, δ(x)⟩ = f(x) for x ∈ M and f ∈ Lip0(M). We denote by F(M)
the norm-closed linear span of δ(M) in the dual space Lip0(M)∗, which
is usually called the Lipschitz-free space over M ; for background, see the
survey [15] and the book [28] (where it is named the “Arens–Eells space”). It
is well known that F(M) is an isometric predual of Lip0(M) [15, p. 91]. We
will write δx := δ(x) for x ∈ M , and use the name molecule for elements of
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F(M) of the form

mx,y :=
δx − δy
d(x, y)

for distinct x, y ∈ M . With a slight abuse of notation, we shall write f(mx,y)

for f(x)−f(y)
d(x,y) .

It is convenient to recall an important tool to construct Lipschitz func-
tions, McShane’s classical extension theorem. It says that if N ⊆ M and
f : N → R is a Lipschitz function, then there is an extension to a Lipschitz
function F : M → R with the same Lipschitz constant; see for example [28,
Theorem 1.33].

Let us now consider the following definitions.

Definition 2.5. Let M be a metric space and f ∈ Lip0(M).

(1) We say that f is local if for every ε > 0 there exist u ̸= v in M with
d(u, v) < ε and f(mu,v) > ∥f∥ − ε.

(2) We say that a point t ∈ M is an ε-point of f if for every neighborhood
U ⊂ M of t, there exist u ̸= v in U such that f(mu,v) > ∥f∥ − ε.

(3) We say that f is spreadingly local if, for every ε > 0, there are infinitely
many ε-points of f .

The above definitions come from [18], where it was proved that if M is a
compact metric space then if every Lipschitz function is local then Lip0(M)
has the Daugavet property. Later, in [14] it was proved that it is actually a
characterization even when M is complete.

Let us end with the following preliminary lemma, motivated by the ideas
around the results of [25, Section 3], which tells us that one way of finding
molecules far from a given element of F(M) is to look for close enough
points. Namely, we have the following result.

Theorem 2.6. Let M be a metric space and let un, vn be two sequences
in M such that un ̸= vn for every n and d(un, vn) → 0. Then, for every
µ ∈ SF(M),

∥µ+mun,vn∥ → 2.

Proof. Assume for contradiction that there exist µ ∈ SF(M) and ε0 > 0
such that

∥µ+mun,vn∥ ≤ 2− ε0 for every n ∈ N.

Since linear combinations of evaluation mappings are dense in F(M) we can
assume that µ =

∑n
i=1 λiδxi where {x1, . . . , xn} ⊆ M\{0}. Pick f ∈ SLip0(M)

with f(µ) = 1 and define

N := {x1, . . . , xn} ∪ {0}.
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Define θ := infx ̸=y∈N d(x, y) > 0. Up to taking a subsequence, we can
assume that d(un, vn) ≤ θ

2n for every n ∈ N. Hence

d(x, y) + d(un, vn) ≤ d(x, un) + d(y, vn) + 2d(un, vn)

≤ d(x, un) + d(y, vn) +
1

n
(d(x, y) + d(un, vn)),

so
(1− 1/n)(d(x, y) + d(un, vn)) ≤ d(x, un) + d(y, vn)

for all distinct x, y ∈ N and every n ∈ N.
We define, for every n ∈ N, a Lipschitz function gn on N ∪ {un, vn} as

gn(x) = f(x) for every x ∈ N ,

gn(un) := inf
x∈N

(
gn(x) +

1

1− 1/n
d(x, un)

)
,

gn(vn) := sup
x∈N∪{un}

(
gn(x)−

1

1− 1/n
d(x, vn)

)
.

Notice that ∥gn∥ ≤ 1
1−1/n for every n ∈ N (see, for example, [28, Propo-

sition 1.32]). Fix n ∈ N so large that 1 − 1/n > 1 − ε0/2. By McShane’s
theorem, we can extend gn to the whole M without increasing its Lips-
chitz norm. Since gn agrees with f on N , we get gn(µ) = 1. We claim that
gn(un) − gn(vn) ≥ d(un, vn) for every n ∈ N (equivalently gn(mun,vn) ≥ 1).
By definition, there are z ∈ N and z′ ∈ N ∪ {un} such that gn(un) =
f(z) + (1 − 1/n)−1d(z, un) and gn(vn) = gn(z

′) − (1 − 1/n)−1d(z′, vn). If
z′ = un, then gn(un)− gn(vn) = (1− 1/n)−1d(un, vn) ≥ d(un, vn). If z′ ∈ N ,
we have

gn(un)− gn(vn) = f(z)− f(z′) +
1

1− 1/n
(d(z, un) + d(z′, vn))

≥ f(z)− f(z′) + d(z, z′) + d(un, vn) ≥ d(un, vn)

since f(z)− f(z′) + d(z, z′) ≥ 0. Now

2− ε0 ≥ ∥µ+mun,vn∥ ≥ gn(µ+mun,vn)

∥gn∥
≥ 2

(
1− 1

n

)
,

a contradiction.

3. Daugavet points. In this section we will focus on studying Daugavet
points in F(M) as well as in Lip0(M). Let us start with the following easy
observation, which says that Daugavet points have to be far from the set of
denting points.

Proposition 3.1. Let X be a Banach space and x0 ∈ SX be a Daugavet
point. Then, for every y ∈ dent(BX), we have d(x0, y) = 2.
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Proof. Suppose that there exist y ∈ dent(BX) and ε > 0 such that
d(x0, y) ≤ 2− ε. Choose a slice S containing y so that diam(S) < ε/2. Note
that

d(x0, z) ≤ d(x0, y) + d(y, z) < 2− ε+ ε/2 = 2− ε/2

for every z ∈ S. This implies that x0 cannot be a Daugavet point.

In general, the converse of the previous proposition is false. Indeed,
dent(Bℓ∞) = ∅, so d(x, y) = 2 for every x ∈ Bℓ∞ and every y ∈ dent(Bℓ∞).
However, ℓ∞ fails the Daugavet property (see e.g. [29, p. 78]), so there are
elements in Bℓ∞ which are not Daugavet points.

In spite of the previous example, we will prove that the previous behavior
does not occur for the class of Lipschitz-free spaces over compact metric
spaces.

Theorem 3.2. Let M be a compact metric space and µ ∈ SF(M). The
following assertions are equivalent:

(1) µ is a Daugavet point.
(2) If ν ∈ dent(BF(M)) then d(µ, ν) = 2.

Moreover, if µ is of the form mx,y for certain x ̸= y ∈ M , then the
previous two are equivalent to:

(3) If u, v ∈ M satisfy [u, v] = {u, v} then

d(x, y) + d(u, v) ≤ min {d(x, u) + d(y, v), d(x, v) + d(y, u)}.
Proof. It is clear from Proposition 3.1 that (1)⇒(2).
(2)⇒(1). Pick a slice S = S(f, α), where f ∈ SLip0(M). Then we have

two possibilities for f :

• f is not local. Then by [10, Lemma 3.13], f attains its norm at a molecule
mu,v which is a strongly exposed point (in particular, it is a denting point).
By the assumptions ∥µ − mu,v∥ = 2 and, in view of the norm attaining
condition, mu,v ∈ S, and we are done in this case.

• f is local. In that case, by definition, we can find sequences un ̸= vn with
d(un, vn) → 0 and mun,vn ∈ S for every n ∈ N. By Theorem 2.6 we get
∥µ+mun,vn∥ → 2, and we are done.

(2)⇔(3). Assume now that µ=mx,y. Note that distinct elements u, v∈M
satisfy [u, v] = {u, v} if and only if mu,v is an extreme point of BF(M) [5,
Theorem 3.2], which is in turn equivalent to being a preserved extreme point
since M is compact [4, Theorem 4.2], which is equivalent to being a denting
point by [13, Theorem 2.4]. Moreover, by [6, Theorem 2.4], ∥mx,y±mu,v∥ = 2
is equivalent to the inequality d(x, y) + d(u, v) ≤ min {d(x, u) + d(y, v),
d(x, v) + d(y, u)}.

From all these facts, (2) and (3) are equivalent.



Daugavet points and ∆-points in Lipschitz-free spaces 9

Next, we exhibit an example of a metric space M such that F(M) does
not have the Daugavet property but there exists a Daugavet point mx,y in it.

Example 3.3. Let M := {−1} ∪ [0, 1] ⊆ R and let y = 0, x = 1. Then
mx,y is a Daugavet point. Indeed, if u, v are such that {z ∈ M : d(z, u)
+ d(z, v) = d(u, v)} = {u, v} then, up to relabeling, u = 0 and v = −1.
Moreover,

d(x, y)+d(u, v)=2≤min {d(x, u)+d(y, v), d(x, v)+d(y, u)}=min {2, 2}=2.

By Theorem 3.2, mx,y is a Daugavet point. However, it is easy to see that
F(M) does not have the Daugavet property because it is clearly not a length
space [14, Theorem 3.5].

Now we turn to a brief discussion of Daugavet points and their w∗-version
(see Definition 3.5) on Lip0(M). First of all, a local argument in [18, Theo-
rem 3.1] yields, following the proof word-by-word, the following result.

Proposition 3.4. Let M be a complete metric space and let f ∈SLip0(M).
If f is spreadingly local, then f is a Daugavet point.

It is natural to wonder whether the previous conclusion holds if f is
merely a local Lipschitz function. We do not know the answer. Note that the
main difficulty in studying Daugavet points in spaces of Lipschitz functions
is that no good description of the weak topology in Lip0(M) is known (which
makes it difficult to determine whether or not a Lipschitz function belongs
to a given (weak) slice). For this reason, we turn to a weak-star-version of
the concept of Daugavet point in the following sense.

Definition 3.5. Let X be a Banach space. An element x∗ ∈ SX∗ is said
to be a w∗-Daugavet point if, given a w∗-slice S of BX∗ and any ε > 0, there
exists y∗ ∈ S such that ∥x∗ − y∗∥ > 2− ε.

Apart from being a natural generalization of the concept of Daugavet
point, the previous definition has deep connections with Banach spaces en-
joying the Daugavet property thanks to the celebrated work [21]. Indeed,
[21, Lemma 2.2] says that a Banach space X has the Daugavet property if
and only if every element of SX∗ is a w∗-Daugavet point.

The following theorem confirms, for the case of w∗-Daugavet point, our
initial intuition about local Lipschitz functions. The proof will use ideas from
[8, Theorem 2.4].

Theorem 3.6. Let M be a complete metric space. If f ∈ SLip0(M) is
local, then f is a w∗-Daugavet point.

Proof. Assume that f is local. Let S = S(µ, α) be a w∗-slice of BLip0(M)

with µ ∈ F(M) \ {0} and α > 0. For fixed ε > 0, our aim is to find g ∈ S
such that ∥f − g∥ > 2− ε. Without loss of generality assume ε ≤ min {α, 1}
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and µ =
∑N

i=1 βiδxi with ∥µ∥ = 1, where β1, . . . , βN ∈ R and x1, . . . , xN ∈
M \ {0}.

Let h ∈ S be such that h(µ) ≥ (1 + ε)(1 − α). Pick r ∈ (0, ε) such
that all the balls B(0, r), B(x1, r), . . . , B(xN , r) are at distance at least r
from each other. Let u, v ∈ M be such that u ̸= v, d(u, v) < εr/2 and
f(mu,v) > 1− εr/2. Such u and v exist because f is local.

We will now extend the 1-Lipschitz function h from {0} ∪ {x1, . . . , xN}
to a (1 + ε)-Lipschitz function h̃ on {0} ∪ {x1, . . . , xN} ∪ {u, v} so that

h̃(v)− h̃(u) = d(u, v).

In order to define h̃ at u and v, let a, b ≥ 0 be such that

h(x)− d(x, u) ≤ h(u)− a ≤ h(v) + b ≤ h(x) + d(x, v)

and
(h(v) + b)− (h(u)− a) = d(u, v)

where x = xi if B(xi, r) ∩ {u, v} ̸= ∅ for some i ∈ {1, . . . , N}, and x = 0 if
no such i exists. The existence of such a, b satisfying also a, b ≤ 2d(u, v) is
immediate from the following facts:

h(x)− d(x, u) ≤ h(u), |h(v)− h(u)| ≤ d(u, v), h(v) ≤ h(x) + d(x, v),

and
d(u, v) ≤ d(v, x) + d(u, x).

Now we set
h̃(u) = h(u)− a and h̃(v) = h(v) + b.

It is straightforward to verify that h̃ is (1+ε)-Lipschitz on {0}∪{x1, . . . , xN}
∪ {u, v}.

Now extend h̃ further to a (1 + ε)-Lipschitz function to all of M , still
denoted by h̃. Set g := (1+ε)−1h̃. Then g ∈BLip0(M) and g(µ)= (1+ε)−1h(µ)
> 1− α. Hence g ∈ S. On the other hand,

∥f − g∥ ≥ f(mu,v)− g(mu,v) ≥
(
1− εr

2

)
+

1

1 + ε
> 2− ε.

Consequently, f is a w∗-Daugavet point.

4.∆-points. In this section we turn to the study of∆-points in Lipschitz-
free spaces. We are motivated by from the results of [14], where a metric
characterization of when F(M) has the Daugavet property is given in terms
of a metric property depending only on M , the property of M being a
length space. Taking a look at the definition of length spaces, we consider
the following local concept of length space.
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Definition 4.1. Let M be a metric space and x ̸= y in M . We say that
the points x and y are connectable if given ε > 0 there exists a 1-Lipschitz
mapping α : [0, d(x, y) + ε] → M with α(0) = y and α(d(x, y) + ε) = x.

Notice that a metric space M is a length space if and only if any distinct
points are connectable. This property is equivalent to the fact that for all
x, y ∈ M and δ > 0 the set

Mid(x, y, δ) := B

(
x,

1 + δ

2
d(x, y)

)
∩B

(
y,

1 + δ

2
d(x, y)

)
is non-empty (see [14, Lemma 3.2]).

Our interest in this definition is the following result.

Proposition 4.2. Let M be a metric space and let x ̸= y in M be
connectable. Then mx,y is a ∆-point.

Proof. Pick a slice S = S(f, δ) with ∥f∥ = 1 containing mx,y. Let us find
u ̸= v such that mu,v ∈ S and ∥mx,y −mu,v∥ ≈ 2. Assume with no loss of
generality that d(x, y) = 1. Find 0 < β < δ such that f(mx,y) > 1− β, take
η > 0 with 1−β

1+η > 1−δ and let α : [0, 1+η] → M be a 1-Lipschitz curve such
that α(0) = y and α(1 + η) = x. Then f ◦ α : [0, 1 + η] → R is a 1-Lipschitz
map, so it is differentiable almost everywhere. Moreover,

1− β < f(α(1 + η))− f(0) =

1+η�

0

(f ◦ α)′ ≤ (1 + η)∥(f ◦ α)′∥∞,

so there exists t0 ∈ [0, 1 + η] such that (f ◦ α)′(t0) > 1−β
1+η > 1− δ. Now pick

ε > 0. By the definition of derivative and the previous condition we can find
t ∈ [0, 1+ η] with 0 < |t− t0| < ε and such that f(α(t))−f(α(t0))

t−t0
> 1− δ. Now

1− δ <
f(α(t))− f(α(t0))

t− t0
=

f(α(t))− f(α(t0))

d(α(t), α(t0))

d(α(t), α(t0))

t− t0

≤ f(mα(t),α(t0))∥α∥L ≤ f(mα(t),α(t0)),

which implies that mα(t),α(t0) ∈ S. Moreover d(α(t), α(t0)) < ε. Summarizing
we have proved that we can find molecules in S where the defining points
are arbitrarily close. By Theorem 2.6, mx,y is a ∆-point.

Remark 4.3. As a matter of fact, in Proposition 4.2, we demonstrated
a stronger property of mx,y than that of being a ∆-point. Namely, for every
slice S containing mx,y and for each µ ∈ SF(M), there is a ν ∈ S with ∥µ−ν∥
is arbitrarily close to 2. Let us formalize this property which will come up
again: Given a Banach space X, a point u ∈ SX is said to be large slice
connected if for every slice S containing u, for every ε > 0 and every v ∈ SX

there is a w ∈ S with ∥v − w∥ > 2− ε.
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Next we aim to get conditions under which connectability is equivalent to
the fact that the corresponding molecule is a ∆-point. However, let us first
deduce from the previous proposition and from Theorem 3.2 that there are
∆-points that are not Daugavet points in the context of Lipschitz-free spaces.
This establishes a major difference between the class of Lipschitz-free spaces
and L1-spaces, where every ∆-point is a Daugavet point [2, Theorem 3.1].

Example 4.4. Let 0 < r < 1, M := [0, 1] × {0} ∪ {(0, r), (1, r)} ⊆
(R2, ∥ · ∥2) and consider x := (1, 0) and y := (0, 0). Notice that mx,y is a
∆-point because there exists an isometry α : [0, 1] → M connecting x and y
(namely α(t) := (t, 0) for every t ∈ [0, 1]). However, it is not a Daugavet
point. To see this, pick u := (1, r) and v := (0, r), and notice that A :=
{z ∈ M : d(u, z) + d(v, z) = d(u, v)} = {u, v}. In fact, given z ∈ M \ {u, v}
we have z = (t, 0) for some t ∈ [0, 1]. Hence

d(u, z) + d(v, z) =
√
t2 + r2 +

√
(1− t)2 + r2 > t+ (1− t) = 1 = d(u, v),

which proves that A = {u, v}. Moreover,

d(x, u) + d(y, v) = 2r < 2 = d(x, y) + d(u, v),

so by Theorem 3.2(3) we conclude that mx,y is not a Daugavet point.

Remark 4.5. The results of [2, Section 3] show that, in many classical
Banach spaces, the concepts of ∆- and Daugavet point coincide. The first
example of a ∆-point which is not a Daugavet point [2, Example 4.7] required
a study of absolute normalized norms (which was pushed quite for in [16]).
See also [3] for more technical examples of Banach spaces containing ∆-points
which are not Daugavet points.

Theorem 3.2 together with Proposition 4.2 provides easy procedures to
obtain metric spaces whose Lipschitz-free space has ∆-points which are not
Daugavet points.

Our aim is now to get necessary conditions for a molecule mx,y to be a
∆-point. We begin with the following preliminary lemma.

Lemma 4.6. Let x ̸= y in M and f ∈ SLip0(M). If mx,y is a ∆-point,
then given a slice S(f, ε/2) of BF(M) with mx,y ∈ S(f, ε/2), there exist u ̸= v

in M with f(mu,v) > 1− ε/2 such that d(u, v) < 2ε
(1−ε)2

d(x, y).

Proof. We follow [14, proof of Lemma 3.7]. Set g :=
f+fx,y

2 , where fx,y is
defined by

fx,y(t) :=
d(x, y)

2

d(t, y)− d(t, x)

d(t, y) + d(t, x)
.

Since fx,y(mx,y) = 1, g satisfies ∥g∥ ≥ g(mx,y) > 1 − ε/4. Since mx,y

is a ∆-point by Lemma 2.2, there exists a slice S(h, η) of BF(M) such that



Daugavet points and ∆-points in Lipschitz-free spaces 13

S(h, η) ⊂ {µ ∈ BF(M) : g(µ) > 1− ε/4} and ∥mx,y − z∥ ≥ 2− ε/2 for every
z ∈ S(h, η). Pick u ̸= v in M such that mu,v ∈ S(h, η). Then, in particular,

∥mx,y −mu,v∥ > 2− ε.

On the one hand, note that f(mu,v) > 1 − ε/2 and fx,y(mu,v) > 1 − ε/2.
Since fx,y(mu,v) > 1− ε, from [14, Lemma 3.6] we get

(1− ε)max {d(x, u) + d(y, u), d(x, v) + d(y, v)} < d(x, y).

To obtain the desired conclusion, we will prove that

(1− ε)(d(x, y) + d(u, v)) ≤ min {d(x, u) + d(y, v), d(x, v) + d(y, u)}.
Notice that ∥mx,y + mv,u∥ > 2 − ε implies that there exists φ ∈ SLip0(M)

such that φ(x) − φ(y) > (1 − ε)d(x, y) and φ(v) − φ(u) > (1 − ε)d(u, v).
Hence

1 ≥ φ(x)− φ(u)

d(x, u)
=

φ(x)− φ(y) + φ(v)− φ(u) + φ(y)− φ(v)

d(x, u)

≥ (1− ε)(d(x, y) + d(u, v))− d(y, v)

d(x, u)
,

which yields (1 − ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v). Using the same
argument taking into account that f(x)−f(y) > (1−ε)d(x, y) and f(u)−f(v)
> (1−ε)d(u, v) we get (1−ε)(d(x, y)+d(u, v)) ≤ d(x, v)+d(y, u), as desired.

With the previous inequalities in mind, the conclusion of the lemma
follows from the estimates in [14, Lemma 3.7].

From the previous lemma and [17, Lemma 1.4], we obtain the follow-
ing characterization of the molecules which are ∆-points in a Lipschitz-free
space.

Theorem 4.7. Let x ̸= y in M . Then mx,y is a ∆-point if and only if
for every slice S = S(f, α) containing mx,y with α < 1 and for every ε > 0,
there exist u, v ∈ M with 0 < d(u, v) < ε such that mu,v ∈ S.

Proof. Suppose that mx,y is a ∆-point. Pick ε > 0 and 0 < β < α such
that 4β

(1−2β)2
d(x, y) < ε. By [17, Lemma 1.4] there exists g ∈ SLip0(M) such

that
mx,y ∈ S(g, β) ⊆ S.

Since g(mx,y) > 1 − β, by Lemma 4.6 there are u ̸= v in M such that
g(mu,v) > 1− β (and so mu,v ∈ S) and

d(u, v) <
4β

(1− 2β)2
d(x, y) < ε,

as desired.
Conversely, let S = S(f, α) be a slice containing mx,y with α < 1 and

let ε > 0. Using the existence of such u, v ∈ M repeatedly, we may find a
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sequence (un, vn) of points with mun,vn ∈ S such that 0 < d(un, vn) → 0.
By Theorem 2.6, we conclude that mx,y is a ∆-point.

Remark 4.8. In fact, what we observed in the second part of the previous
proof is that mx,y is large slice connected (see Remark 4.3). In particular,
for distinct x and y in M , the point mx,y is a ∆-point if and only if mx,y is
large slice connected.

Even though the above is a complete characterization of when a given
molecule mx,y in F(M) is a ∆-point, we would like to obtain a condition
which only depends on the metric space M . In order to do so, we prove the
following consequence of Proposition 4.7.

Corollary 4.9. Let M be a complete metric space and let mx,y a ∆-
point. Pick 0 < r < d(x, y). Then, for every ε > 0,

B(x, r + ε) ∩B(y, d(x, y)− r + ε) ̸= ∅.
In particular, if M is compact, then S(x, r) ∩ S(y, d(x, y)− r) ̸= ∅.

Proof. The proof follows the lines of [14, Lemma 3.4, (iii)⇒(i)]. Assume
with no loss of generality that d(x, y) = 1. Assume that there exist 0 < r < 1
and ε0 > 0 such that

B(x, r + ε0) ∩B(y, 1− r + ε0) = ∅,
and let us prove that mx,y is not a ∆-point. Notice that we can assume that
d(B(x, r+ε0), B(y, 1−r+ε0))≥ δ0> 0. Now define gi, fi :M →R, i=1, 2, by

g1(t) := max

{
r − 1

1 + ε0
d(x, t), 0

}
, f1(t) = g1(t)− f1(0)

g2(t) := min

{
−(1− r) +

1

1 + ε0
d(y, t), 0

}
, f2(t) = g2(t)− g2(0).

Notice that ∥fi∥L ≤ 1
1+ε0

since Lipschitz norm does not increase under taking
maxima and minima of Lipschitz functions [28, Proposition 1.32]. Define
f := f1 + f2, which is a Lipschitz function. Also f(x)− f(y) = 1 = d(x, y),
so ∥f∥ ≥ 1. It is clear from the construction that {z ∈ M : f1(z) ̸= 0} ⊆
B(x, r + ε0) and {z ∈ M : f2(z) ̸= 0} ⊆ B(y, 1− r + ε0). Define the slice

S :=

{
µ ∈ BF(M) : f(µ) >

1

1 + ε0

}
.

Notice that if mu,v ∈ S then, up to relabeling the points u and v, it fol-
lows that u ∈ B(x, r + ε0) and v ∈ B(y, 1 − r + ε0) (because otherwise
f(mu,v) ≤ max {∥f1∥L, ∥f2∥L} ≤ 1

1+ε0
). This implies that d(u, v) ≥ δ0. By

Proposition 4.7 we infer that mx,y is not a ∆-point, as desired.

Remark 4.10. Let M be a complete metric space. By combining Corol-
lary 4.9 with [14, Lemma 3.2], we find that if mx,y is a ∆-point for any x ̸= y
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in M , then M is a length space. Now, we have the following equivalent state-
ments:

(1) M is a length space;
(2) mx,y is a ∆-point for any x ̸= y in M ;
(3) F(M) has the Daugavet property.

For the proof of (1)⇔(3), see [14, Theorem 3.5].

Remark 4.11. According to [2, Definition 5.1], a Banach space X is said
to have the convex-DLD2P if BX = co(∆), where ∆ is the set of ∆-points
of BX .

In general, the convex-DLD2P does not imply that every element of the
unit sphere is a ∆-point [2, Corollary 5.6]. However, Remark 4.10 shows that
if ∆ contains the set {mx,y : x ̸= y in M} (in particular, F(M) would trivially
have the convex-DLD2P) then F(M) even enjoys the Daugavet property.

As pointed out above, a (complete) metric space M is a length space if
and only if for all x, y ∈ M and ε > 0,

B

(
x,

d(x, y)

2
+ ε

)
∩B

(
y,

d(x, y)

2
+ ε

)
̸= ∅.

This might suggest that a local version could be true; in other words, that
the converse of Corollary 4.9 holds. However, the following example, due to
Luis García-Lirola, shows that this is not the case.

Example 4.12. Let M := {0, 1, xt : t ∈ [0, 1]} ⊂ (R, d) with the metric
d(xt, xs) = min{t + s, 2 − t − s} for t ̸= s, where x0 = 0 and x1 = 1. Then
M is complete. It is clear that B(0, r) ∩ B(1, 1 − r) = {xr} ≠ ∅ for every
0 < r < 1. However, m0,1 is not a ∆-point. Indeed, assume that it is. For
α ∈ (0, 1/2), consider the map f defined as f(xt) = 0 for 0 ≤ t < α and
f(xt) = 1−α for 1−α < t ≤ 1. Observe that the slope of f is 1. Now, extend
f by McShane to a Lipschitz map f̃ on M . Notice that m0,1 ∈ S(f, 2α) and
there exist sequences un, vn of points in M with mun,vn ∈ S(f, 2α) such
that 0 < d(un, vn) → 0. By the definition of the metric space M , both un
and vn converge to 0 or 1. However, in either case, f(mun,vn) → 0, which is
a contradiction.

In order to obtain a kind of converse of Proposition 4.2, our strategy
will be to work with complete metric spaces M included in Banach spaces
(so any x, y ∈ M can be joined by geodesics in X) and then assume that
the diam(B(x, r + ε) ∩ B(y, d(x, y) − r + ε)) tends to 0 as ε → 0, in order
to guarantee that M contains curves which are close to the geodesic which
exists in X. The first result along these lines requires compactness of M but
a very natural condition on X.
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Theorem 4.13. Let X be a Banach space and M a compact subset of X.
Assume that x−y

∥x−y∥ is an extreme point of BX . The following assertions are
equivalent:

(1) mx,y is a ∆-point.
(2) For every 0 < r < ∥x− y∥,

S(x, r) ∩ S(y, ∥x− y∥ − r) ̸= ∅.
(3) [x, y] ⊆ M . In particular, x and y are connectable by an isometric curve.

Proof. (3)⇒(1) follows from Proposition 4.2, and (1)⇒(2) from Corol-
lary 4.9. So it remains to prove that (2) implies (3). To this end, pick
0 < r < ∥x − y∥ and define A := S(x, r) ∩ S(y, ∥x − y∥ − r). Since
x−y

∥x−y∥ is an extreme point, up to a shift and a normalization argument,
[9, Lemma 2.1] implies that SX(x, r) ∩ SX(y, ∥x − y∥ − r) only contains
one point, which is precisely

(
r

∥x−y∥
)
x +

(
1 − r

∥x−y∥
)
y. Since A ̸= ∅ and

A ⊆ SX(x, r)∩SX(y, ∥x−y∥−r), we find that
(

r
∥x−y∥

)
x+

(
1− r

∥x−y∥
)
y ∈ A,

so it is in M .

Let us end the section by obtaining a version of Theorem 4.13 which,
assuming a stronger condition on X, will allow us to remove the compactness
assumption on M . Let us consider the following definition.

Definition 4.14. A Banach space X is said to be midpoint locally uni-
formly rotund (for short, MLUR) if whenever (xn) and (yn) are sequences
in SX and 1

2(xn+yn) converges to some element in SX , then ∥xn−yn∥ → 0.

It is not difficult to check that X is MLUR if and only if whenever (xn)
and (yn) are sequences in X such that ∥xn∥ and ∥yn∥ tend to 1 and 1

2(xn+yn)
converges to some member of SX , it follows that ∥xn−yn∥ → 0. Recall that a
locally uniformly convex Banach space is MLUR and a MLUR Banach space
is strictly convex. For more about rotundity in Banach spaces, see [23].

The following lemma is easy to check.

Lemma 4.15. Let X be a Banach space. Then X is MLUR if and only
if whenever (xn) and (yn) are sequences in X such that ∥xn∥ and ∥yn∥ tend
to 1 and rxn+(1−r)yn converges to some member of SX for some 0 < r < 1,
it follows that ∥xn − yn∥ → 0.

Now we are ready to obtain the following result.

Lemma 4.16. Let X be a MLUR Banach space, and x ̸= y in X. Then
for 0 < r < d(x, y),

diam

(
BX

(
x, r +

1

n

)
∩BX

(
y, ∥x− y∥ − r +

1

n

))
→ 0

as n → ∞.
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Proof. By scaling and translating, we may assume that x ∈ SX and
y = −x. Given 0 < r < 2, let xn ∈ BX(x, r+1/n)∩BX(−x, 2− r+1/n) for
each n ∈ N. In other words, ∥xn − x∥ ≤ r+1/n and ∥xn + x∥ ≤ 2− r+1/n
for every n ∈ N. Then

2 ≤ ∥xn − x∥+ ∥xn + x∥ ≤ 2 + 2/n → 2;

hence, passing to a subsequence if necessary, ∥xn−x∥→r and ∥xn+x∥→2−r
as n→∞. Let zn :=(r+ 1

n)
−1(x−xn) and wn=(2−r+ 1

n)
−1(x+xn) in BX .

Then ∥zn∥→1, ∥wn∥→1 and r
2zn+

(
1− r

2

)
wn→x∈SX . By Lemma 4.15, we

conclude that ∥zn −wn∥ → 0 as n → ∞. This implies that xn → (1− r)x as
n → ∞.

Now we are ready to get the desired result.

Theorem 4.17. Let X be a MLUR Banach space and M a complete
subset of X. For x ̸= y in M , the following assertions are equivalent:

(1) mx,y is a ∆-point.
(2) For every 0 < r < ∥x− y∥,

B(x, r + ε) ∩B(y, ∥x− y∥ − r + ε) ̸= ∅.
(3) [x, y] ⊆ M . In particular, x and y are connectable by an isometric curve.

Proof. (3)⇒(1) follows from Proposition 4.2, and (1)⇒(2) from Propo-
sition 4.9. So it remains to prove that (2) implies (3). To this end, let
xn ∈ B(x, r + 1/n) ∩ B(y, ∥x − y∥ − r + 1/n) for each n ∈ N. Note from
Lemma 4.16 that

diam

(
B

(
x, r +

1

n

)
∩B

(
y, ∥x− y∥ − r +

1

n

))
→ 0

as n → ∞. This implies that xn converges to some x0 in M (since M is
complete). Moreover, ∥x0 − x∥ = r and ∥x0 − y∥ = ∥x − y∥ − r. The strict
convexity of X forces x0 =

(
1 − r

∥x−y∥
)
x +

(
r

∥x−y∥
)
y. This proves that the

segment [x, y] is contained in M .
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